dilluns, 26 de gener del 2015

La "divina proporció".

No podem descriure cap cosa de la realitat sense l'ajut directe o indirecte d'una noció o una idea que anomenem  "proporció".  Observar el món comporta automàticament la conseqüència de la "comparació", que és un dels actes fonamentals de les nostres capacitats de percepció i d'elaboració del pensament.   Comparar diversos objectes vol dir verificar si les seves qualitats més evidents son iguals o no:  si la seva forma, la seva longitud, l'amplària, el volum, el color, etc.  són aparentment iguals o no.  De la mateixa manera,  quan comparem objectes ens fixem en altres detalls que ens ajuden a relacionar-los:  la seva posició, la seva proporció...
La idea de la proporció fa referència a la mesura relativa de les coses.  Per exemple,  si comparo dos bancs de diferent llargària  que transporten uns operaris en una plaça de la ciutat,  puc fer-me la pregunta:  ¿Quant més llarg és un banc que l'altre?  i fins i tot puc preguntar:  Quantes vegades cabria el banc A damunt del banc B?


Banc B

Banc A









 La resposta a aquestes preguntes s'obté a través de la proporció:  així,  podríem dir que el banc A cabria dues vegades damunt del banc B  (el banc A és igual a la meitat de B),  o el banc A cabria tres vegades damunt del banc B  (el banc B és el triple de llarg que l'A)...


   Banc A   =   1/2  banc B


Trobar la proporció entre dos objectes diferents significa descobrir-ne aquesta mena de relació,  que pot expressar-se en forma de fracció:   A =  1/2 B  o també     B/A = 2


El coneixement matemàtic,  la geometria i també les formes artístiques o el llenguatge musical neix moltes vegades d'observacions tan senzilles com aquesta.  El següent video de Youtube explica una mica la història d'una d'aquestes observacions:  la que va donar orígen a una de les fórmules de proporcionalitat més famoses i més sorprenents que s'han descobert mai:  La "divina proporció", la "proporció àuria",  o el "nombre d'or",  anomenat també nombre "fi" (en honor a l'escultor i arquitecte grec Fídies).
   Igual com nosaltres hem fet en el nostre exemple anterior,  alguns savis grecs de l'Antiguitat (Euclides, ...) van voler saber quantes vegades cabria un costat d'un pentàgon regular en la diagonal d'aquella mateixa figura,  i així van trobar el nombre "fi".  La resposta era que el costat del pentàgon regular cabia 1, 618033...  vegades dins de la seva diagonal corresponent.  És a dir,  la  divisió de la diagonal del pentàgon entre el costat del mateix pentagon dóna aquest resultat.  
Segles més tard,  cap a finals de l'Edat Mitjana,  el matemàtic Fibonacci [Leonardo de Pisa  (1170 - 1250]  va retrobar-se amb aquest nombre mentre investigava la seva famosa progressió numèrica.   El pentàgon,  així com la sèrie de Fibonacci,  formen figures extraordinàries que, entre d'altres coses,  apareixen a la base d'innombrables  estructures orgàniques de la natura...

 


















Simetria

Dintre dels traçats geomètrics i dels recursos visuals que utilitzem per compondre una imatge, la simetria pot considerar-se un dels plantejaments més poderosos per obtenir una sensació d'ordre, de regularitat formal,  d'invariable quietud i perfecte equilibri en una obra acabada.   En els videos següents de Youtube se'ns mostra com dibuixar figures simètriques,  tant si volem crear la simetria al llarg d'un eix imaginari (simetria axial) com si ho volem fer al voltant d'un punt central  (simetria central o radial).

















divendres, 9 de gener del 2015

L'hort de l'Institut Maremar: Per una proposta creativa!

Exemple de distribució d'un hort  i grafismes
per representar diversas plantacions (X. Bentué).
Encara avui,  en la classe dedicada a Educació Visual i Plàstica,  se'ns fa estrany de parlar d'horts,  jardins i altres vergers d'aquesta mena.  Quatre generacions després de l'albada modernista, dos cents anys més enllà dels primers embrions de l'hortoteràpia, i a cinc segles i mig de l'Acadèmia Florentina,  encara sembla que desvariagem quan en una classe de dibuix ens mirem un hort i proposem un petit exercici de representació!


Per aquells que encara ens podrien mirar malament,  direm que un hort dóna per una mica més que per a colgar-hi cebes i patates:  un hort és,  per exemple, un lloc idoni per a aplicar una mica de geometria.  I posats a fer lligams,  un hort fa de bon reclam per tota mena d'ocells,  fins i tot pels que fan volar la memòria enrera,  i busquen entre papirs i canals els orígens de coses ben nostres.

En aquest primer trimestre que hem passat,   els alumnes de 3er d'ESO  han hagut de mirar-se l'hort des de totes bandes.  Els hi hem fet fer esbossos i dibuixos que,  sense acabar,  han anat quedant mig amagats per dins les seves carpetes.   Entre aquests exercicis hi havia vistes en planta,  dibuixos a escala  que de manera senzilla i inocent proposen una estructura creativa per organitzar les plantacions i els camins de l'hort.     

Exemple d'estructura "espanta-ocells"






























Llicència de Creative Commons
Treball escolar sense títol. de DDAA - (Alumnes que autoritzen la publicació d'aquests dibuixos en aquest blog) està subjecta a una llicència de Reconeixement-NoComercial-SenseObraDerivada 4.0 Internacional de Creative Commons

diumenge, 4 de gener del 2015

Sobre el mar.

Hem demanat als alumnes de 1er d'ESO que fessin un esforç:  volíem que dibuixessin imatges relacionades amb el mar,  però intentant fugir de les molt estereotipades formes que tots tenim al cap.  Per uns dies els hem demanat que provessin de representar sensacions, textures i elements del mar  amb una mirada nova i més atrevida!
120 ulls i 120 mans s'han posat a la feina,  i ens han dut coses com aquestes...




La imatge, el color, la composició

Aquest gran poder d'atracció que li reconeixem a la imatge es basa , segurament,  en una combinació de raons que sovint no podem acabar d'explicar.  La imatge,  unida a tot d'altres estímuls sensorials i culturals,  ens pot despertar emocions, idees i respostes molt diverses.  Val la pena, de vegades, que ens aturem a analitzar com ha estat configurat aquell producte visual que ens atrau:  Com és?  Què s'hi veu?  Quins colors mostra?  Com és la llum?  Com es componen les escenes?...    Aquest és l'exercici que us proposem de fer amb aquest delicat video-clip de la cantant Laura Mvula,  interpretant el tema  "She".  (Feu servir el guió que trobareu al final d'aquesta entrada per tal de treballar les activitats).






Lletra de la cançó:

She walked towards you with her head down low
She wondered if there's a way out of the blue
Who's gonna take her home this time
She knew that this time wouldn't be the last time
Oh oh, oh oh, oh oh...
There she waits looking for a savior
Someone to save her from a dying self
Always taking ten steps back and one step forward
She's tired, but she don't stop

Oh oh, oh oh, oh oh...
Oh oh, she don't stop, she don't stop, she don't stop
Oh oh, she don't stop, she don't stop, she don't stop

Every day she stood, hoping for a new life
She closed her eyes, and she heard a small voice say
You don't stop no, you belong to me
She cried, maybe it's too late!

(Don't, don't stop, don't, don't stop)
She don't stop, she don't stop, she don't stop
(repeat)

She walked towards you with her head down low
She wondered if there's a way out of the blue
Who's gonna take her home this time





   (Ella va venir cap a tu amb el cap baix

preguntant-se si hauria alguna sortida inesperada

Qui la retornaria a la seva llar aquesta vegada?

Ella sabia que aquest cop no sería el darrer

 Així es va quedar, pendent d'un salvador

D'algú que la rescatés del seu propi defalliment

Sempre fent deu passes enrera i només una en davant!

 Es sentia cansada, pero mai no s'aturaria



No s'atura, no s'atura, no s'atura

No s'atura, no s'atura, no s'atura



Cada día restava, amb l'esperança d'una nova vida

Tancava els ulls i sentia una petita veu que li deia :

"No t'aturis, no;  tu formes part de mi"

I ella plorava, per si potser havia fet tard.



Però no s'atura, no s'atura, no s'atura
No s'atura, no s'atura, no s'atura

Ella va venir cap a tu amb el cap baix
preguntant-se si hauria alguna sortida inesperada
Qui la retornaria a la seva llar aquesta vegada?
Ella sabia que aquest cop no sería el darrer.)


Us proposem encara un altre exercici:  Observeu aquest seguit de fotografíes que es mostren en aquest video.  Les imatges prenen com a fil conductor la instal.lació artística que Christo i Jeanne Claude van projectar i realitzar pel Central Park, a New York,  els anys 1979  a  2005. 
Observeu el paper predominant que adopta el color,  un sol color,  en un entorn que la neu ha transformat en un fons pràcticament neutre.  Observeu els contrastos formals,  rítmics, tonals,...   Deixeu-vos seduir per cada imatge,  amb l'acompanyament de la música i la veu d'Alicia Keys.  (Més avall trobareu un altre video mostrant la mateixa obra de forma diferent)





Finalment,  repassem aquí alguns conceptes clau sobre la composició:  Segur que després podreu tornar a mirar-vos els videos anteriors i descobrireu una enorme quantitat de detalls més que no havíeu copsat la primera vegada...
                                             



                      
                       Pes visual i equilibri compositiu from Laura.akm






GUIÓ PER A TREBALLAR LES ACTIVITATS:




divendres, 2 de gener del 2015

De quin color es?


Comprendre els colors no és una qüestió que puguem resoldre solament amb els nostres ulls;  d'entrada,  veure els colors és un fet que implica la nostra percepció (els nostres ulls, la nostra capacitat de visió i el nostre cervell).     Ens hem preguntat mai...   Què pot sentir una persona que no pugui percebre els colors normalment?  




Els colors apareixen per una sèrie de fenòmens físics,  relacionats amb la llum i amb la matèria,  però de seguida  queden immersos en la realitat del món que ens envolta,  com a característiques que afecten els objectes,  com una qualitat més que mostren totes les coses i com a elements indiscutibles del paisatge i de l'escenari que observem cada dia.  El fet del color, doncs,  s'ha d'entendre com un dels factors principals que dona lloc a totes les imatges que  hom pot copsar i produir en aquest món.




No cal ni dir que això ha estat així des de l'inici de la civilització i,  per tant,  el conjunt del coneixement dels colors  (i cada color per si mateix) és fruit i protagonista d'una història llarguíssima,  plena de detalls sorprenents i de lligams insospitats.  No només els àmbits artístics s'han interessat pel color,  sinó què des de la ciència més pura,  de la química a la medicina, fins a la filosofia o la política,  totes les branques de la cultura humana han intervingut en algun moment en el desenvolupament d'aquesta història dels colors.


Ticià :  "Baco i Ariadna"


Comprendre els colors,  per tant,  no és una qüestió que puguem resoldre solament pel simple fet de veure'ls amb els nostres ulls!!  














I per això els començarem a mirar des d'una mica més endins...